
Locking in BPF

Kumar Kartikeya Dwivedi

Outline

01 Background

02 Problem Statement

03 Resilient Queued Spin Lock

04 Evaluation

05 Next Steps

2

bpf_spin_lock
● Helper functions were introduced in 2019.
● Allows updating map values atomically.

01 Background

v = bpf_map_lookup_elem(&map, &key);

if (!v) { return 0; }

bpf_spin_lock(&v->lock);

v->val++;

bpf_spin_unlock(&v->lock);

3

bpf_spin_lock
● Helper functions were introduced in 2019.
● Allows updating map values atomically.
● One lock at a time, to prevent deadlocks.
● No function calls in the critical section.

01 Background

v = bpf_map_lookup_elem(&map, &key);

if (!v) { return 0; }

bpf_spin_lock(&v->lock);

v->val++;

bpf_spin_unlock(&v->lock);

4

Graph Data Structures
● sched_ext led to introduction of linked lists

and red-black trees.

01 Background

n = bpf_obj_new(typeof(*n));

if (!n) { return 0; }

n->key = 5;

n->data = 10;

bpf_spin_lock(&lock);

bpf_rbtree_add(&root, &n->node, less);

bpf_spin_unlock(&lock);

5

Graph Data Structures
● sched_ext led to introduction of linked lists

and red-black trees.
● Still restricted to one lock at a time.
● Only data structure operations supported

inside the critical section.

01 Background

n = bpf_obj_new(typeof(*n));

if (!n) { return 0; }

n->key = 5;

n->data = 10;

bpf_spin_lock(&lock);

bpf_rbtree_add(&root, &n->node, less);

bpf_spin_unlock(&lock);

6

Friction
● Expressing useful algorithms not feasible

with “one lock at a time” constraint.

01 Background

v1 = bpf_map_lookup_elem(&map, &key1);

v2 = bpf_map_lookup_elem(&map, &key2);

if (!v1 || !v2) {

return 0;

}

bpf_spin_lock(&v1->lock);

bpf_spin_lock(&v2->lock); // AA or ABBA

migrate_task(p, v1->rbtree, v2->rbtree);

…

7

Friction
● Expressing useful algorithms not feasible

with “one lock at a time” constraint.
● Restricting function calls within critical

section is too prohibitive.

01 Background

bpf_spin_lock(lock1);

bpf_map_lookup_elem(&map, &key); // No!

bpf_spin_unlock(lock1);

8

Friction
● Expressing useful algorithms not feasible

with “one lock at a time” constraint.
● Restricting function calls within critical

section is too prohibitive.

01 Background

bpf_spin_lock(lock1);

bpf_map_lookup_elem(&map, &key); // No!

bpf_spin_unlock(lock1);

9

Bugs
● syzbot regularly finds deadlocks in BPF

maps even after implementing per-CPU
counter protection.

01 Background

10

Bugs
● syzbot regularly finds deadlocks in BPF

maps even after implementing per-CPU
counter protection.

● Infeasible for verifier to perform full-kernel
control flow analysis to prevent them
statically.

01 Background

11

Bugs
● syzbot regularly finds deadlocks in BPF

maps even after implementing per-CPU
counter protection.

● Infeasible for verifier to perform full-kernel
control flow analysis to prevent them
statically.

● Endless game of whack-a-mole.

01 Background

12

02 Problem Statement

13

Deadlock Safety

Guaranteed forward
progress for the kernel.

Intractable problem to
use static analysis to
detect deadlocks.

02 Problem Statement

14

Deadlock Safety

Guaranteed forward
progress for the kernel.

Intractable problem to
use static analysis to
detect deadlocks.

02 Problem Statement

Scalability

BPF programs / maps
are used in performance
sensitive contexts.

Overhead to ensure
runtime safety must be
minimal.

15

Deadlock Safety

Guaranteed forward
progress for the kernel.

Intractable problem to
use static analysis to
detect deadlocks.

02 Problem Statement

Scalability

BPF programs / maps
are used in performance
sensitive contexts.

Overhead to ensure
runtime safety must be
minimal.

Fault Isolation

Only offending
programs are affected
by incorrectness.

Kernel must pinpoint the
culprit program and
recover itself quickly.

16

03 Resilient Queued Spin Lock

17

Queued Spin Lock - Primer
● 4-byte lock word.
● A single byte to indicate ownership status (locked).
● A pending ‘queue’ of size 1 for low contention (pending).
● Proper MCS queue of size NR_CPUS for high contention (tail).

18

10,000 foot view
● Each CPU maintains a table of held locks.
● Both ‘pending’ waiter and ‘MCS queue’ head will check for deadlocks.
● If deadlock is detected (AA or ABBA), return error.
● If deadlock is not detected but enough time has passed, return error.

19

tail pending locked

Contention

20

0 0 0

tail pending locked

21

0 0 1

tail pending locked

22

0 1 1

tail pending locked

23

0 0 0

tail pending locked

24

0 0 1

tail pending locked

25

26

0xblue 1 1

tail pending locked

27

0xturquoise 1 1

tail pending locked

⏰

⏰

28

0xturquoise 1 1

tail pending locked

https://emojipedia.org/alarm-clock
https://emojipedia.org/alarm-clock

0xgreen 0 1

tail pending locked

29

Recovery of queue

The head of the wait queue runs deadlock and timeout checks

In case of timeout at head of queue:

● Exit from wait queue is in FIFO order.
● No need to handle races of waiters in the middle of the queue randomly leaving.

30

0xgreen 0 1

tail pending locked

⏰

31

https://emojipedia.org/alarm-clock

0xgreen 0 1

tail pending locked

32

0xgreen 0 1

tail pending locked

33

0xgreen 0 1

tail pending locked

34

0xgreen 0 1

tail pending locked

35

0xgreen 0 1

tail pending locked

36

0 0 1

tail pending locked

37

04 Evaluation

38

locktorture - x86

39

lock1_threads - will-it-scale - x86

40

locktorture - arm64

41

lock1_threads - will-it-scale - arm64

42

05 Next Steps

43

Use in BPF
subsystem

Change BPF
runtime to use the
new lock to avoid
and recover from
deadlocks at
runtime.

05 Next Steps

44

Use in BPF
subsystem

Change BPF
runtime to use the
new lock to avoid
and recover from
deadlocks at
runtime.

05 Next Steps

Relaxing
restrictions

Relax restrictions
on function calls
and behavior inside
critical sections for
more flexibility.

45

Use in BPF
subsystem

Change BPF
runtime to use the
new lock to avoid
and recover from
deadlocks at
runtime.

05 Next Steps

Relaxing
restrictions

Relax restrictions
on function calls
and behavior inside
critical sections for
more flexibility.

Reporting
violations

Standard output
interface
per-program to
report
deadlock-safety
violations to user
space.

46

Links
Cover letter (with more numbers):
https://lore.kernel.org/bpf/20250316040541.108729-1-memxor@gmail.com

Algorithmic deep-dive:

https://github.com/kkdwivedi/rqspinlock/blob/main/rqspinlock.pdf

47

https://lore.kernel.org/bpf/20250316040541.108729-1-memxor@gmail.com
https://github.com/kkdwivedi/rqspinlock/blob/main/rqspinlock.pdf

48

